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Abstract

This paper presents a fully Bayesian approach that simultaneously combines non-overlapping (in time) basic event and higher-level event

failure data in fault tree quantification. Such higher-level data often correspond to train, subsystem or system failure events. The fully

Bayesian approach also automatically propagates the highest-level data to lower levels in the fault tree. A simple example illustrates our

approach. The optimal allocation of resources for collecting additional data from a choice of different level events is also presented. The

optimization is achieved using a genetic algorithm.
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1. Introduction

Vesely et al. [1], the Probabilistic Risk Assessment

(PRA) Procedures Guide [2], and many other textbooks

discuss fault tree quantification (e.g. the estimation of basic

and higher-level event probabilities in a fault tree). This

quantification consists of three steps: (1) determining the

basic event probabilities, (2) calculating the minimal cut set

probabilities, and (3) determining the system (i.e. the top

event) probability using either exact or approximate

methods.

It is current and accepted practice in fault tree and

accident sequence quantification (as implemented, for

example, in the Systems Analysis Programs for Hands-on

Integrated Reliability Evaluations [SAPHIRE [3] package

and the Integrated Reliability and Risk Analysis System

[IRRAS [4,5]]]) to use only statistical data and information

regarding the basic events. In a departure from this practice,

Martz and Almond [6] use non-overlapping statistical data

and information collected on higher-level events or gates in

the tree to modify standard estimates. Doing so is important

because normal operation and testing procedures often

generate data for many high-level gates corresponding to,

for example, train, subsystem, and system unavailability,

and often even the top event itself.

By ‘non-overlapping’ we mean that the higher-level

event data are from either non-overlapping time periods or

demands. Otherwise, the use of higher-level event data

would result in double counting of data and thus

dependency. This ‘non-overlapping’ constraint naturally

applies to any system test that is destructive, such as a

missile fired at a target. If the same higher-level data provide

basic event information, then we can instead use such data

to verify the structure of the fault tree. In particular, any

higher-level failure data not consistent with the fault tree is

an indication that the fault tree model is inadequate. Note

that data from overlapping subsystems, i.e. which consist of

some of the same basic events, can also be incorporated as

long as they are non-overlapping in time; data overlapping

in time can also be employed if the subsystems are

independent such as data collected from different plants.

This paper describes a fully Bayesian approach which

can simultaneously combine basic event and independent

higher-level failure data and information in fault tree

quantification. The obvious advantage of this approach is

the associated increase in accuracy and precision of

estimated probabilities that result from the combined use
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of these data. Note that Martz and Almond [6] only

approximated the fully Bayesian approach by using method-

of-moment type estimators based on the first two distribu-

tional moments.

The fully Bayesian approach also permits the incorpor-

ation of independent industry-wide statistical analyses that

are sometimes performed on safety systems considered in a

PRA. Such analyses represent a source of generic higher-

level statistical information for the specific plant under

consideration. For example, Grant et al. [7] describe an

industry-wide statistical analysis of the safety-related

performance of the high-pressure coolant injection system

at US commercial boiling water reactor plants for the period

1987–1993.

1.1. Related methods

Numerous articles discuss system reliability for systems

described by reliability block diagrams in which both

component and independent system-level test data are

combined. Mastran [8] and Mastran and Singpurwalla [9]

consider an approximate Bayesian approach to the esti-

mation of system reliability based on pass/fail test data

collected at both the component and system levels for a

coherent system of nonidentical components. They use a

top-down approach that apportions the posterior system

reliability distribution to each component through a

component prior distribution that is consistent with the

system configuration. By combining these component priors

with the component level data, component posterior

distributions are obtained. Propagating these component

posteriors back up to the system level using the system

model yields the final system posterior.

Martz et al. [10] and Martz and Waller [11] develop an

approximate Bayesian procedure for estimating system

reliability based on a bottom-up approach. In their approach,

prior means and variances of prior distributions are

combined with data and propagated upward in the system

to obtain a system reliability posterior distribution.

Johnson et al. [12] propose a fully Bayesian approach for

system reliability estimation for systems described by a

reliability block diagram. This approach resolves the

upward and downward propagation problem by simul-

taneously modeling the complete set of system parameters.

We generalize their procedure in this paper to fault tree

quantification.

When the higher-level and basic event data are

overlapping, the above methods cannot be applied because

the models do not account for the resulting dependent data.

For example, a standby system may fail to operate upon

demand (a higher-level system failure), and this failure may

subsequently be traced to the failure of a particular

component in the system (a basic event failure). However,

the above methods (and the method presented here as well)

are still applicable if only one level of data is used. Using the

higher-level event data to form an aggregated posterior for

the higher-level gate produces an aggregate analysis. Using

the data at the basic event to form a disaggregated posterior

for the higher-level event produces a disaggregate analysis.

Usually, the aggregate and disaggregate posteriors will

disagree, in which case we say that an aggregation error

occurs. Very large aggregation errors are often grounds for

suspicion of the structure of the fault tree model.

The concept of aggregation error is quite well-known and

has been widely studied. It had its genesis in econometrics

in the work of Simon and Ando [13], Ijiiri [14], and

Chipman [15]. The book by Theil [16] describes its early

developmental ideas. Mosleh and Bier [17] were the first to

discuss aggregation error in the context of risk and

reliability analysis. Bier [18] and Azaiez and Bier [19]

likewise consider aggregation error in the Bayesian

estimation of reliability.

An outline of the paper is as follows. In Section 2, to

focus attention, we present an example fault tree. A

Bayesian approach for using independent higher-level

failure data in any coherent fault tree is presented in

Section 3 and the required numerical Bayesian compu-

tations are summarized in Section 4. Section 5 illustrates the

performance of the proposed approach using the fault tree

example. Section 6 discusses the problem of allocating

additional resources to improve inference of the top event

probability. Section 7 concludes with a discussion.

2. Example

Consider the following simple fault tree example as

depicted in Fig. 1. This fault tree was previously analyzed

by Russell et al. [3,4] to illustrate the IRRAS fault tree

methodology. It consists of AND and OR gates and one 2/3

gate. There are five basic events denoted by BE1–BE5. One

intermediate event denoted by IE is identified and the top

event is denoted by TE. Note the difference between a fault

tree and a reliability block diagram in which, for our

example, a basic event such as BE1 shows up in more than

one branch of the fault tree. In this paper, we consider the

situation where prior information and/or data are available

at the basic, intermediate and top events.

3. A fully Bayesian approach for inference

We assume that the prior information about the

probability of occurrence of each basic event can be

summarized by a Betaða; bÞ distribution. If additional basic

event data are available in the form of binomial data, x

failures, say, in n trials, then the available information for

the basic event by combining the prior information and data

can be obtained by Bayes’ theorem. If additional basic event

data are available, then the available information for the

basic event can be expressed as a Betaða þ x; b þ n 2 xÞ

distribution.
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The proposed method also requires that the higher-level

event information be expressed in terms of equivalent

observational data; this requirement ensures that the

posterior distribution of the basic event probability obtained

using multilevel data and information is well defined. Thus,

we express the higher-level event information as equivalent

~x failures in ~n trials, although ~x and ~n need not be integers.

For example, suppose we believe that a higher-level event

probability is 0.05, but that our belief is only as precise as

information contained in two observations. In that case, we

would set ~x ¼ 0:1 and ~n ¼ 2; i.e. 0.1 event occurrences in

two trials. Note that this higher-level event information

needs to be independent of that induced by propagating the

basic event priors through the fault tree. In addition, if there

are actual higher-level event data available, e.g. 3 events in

100 trials, then the combined information can be rep-

resented as 3.1 events in 102 trials or ~x ¼ 3:1 and ~n ¼ 102:

If the higher-level information consists only of actual event

data, then ~x and ~n are necessarily integers.

Following Johnson et al. [12], a key feature of the

proposed method is that higher-level event probabilities are

expressed in terms of basic event probabilities. For fault

trees, these expressions can be obtained by determining the

minimal cut sets of higher-level events and applying the law

of total probability (also known as the inclusion–exclusion

rule). For example, in the fault tree depicted in Fig. 1, the

top event has five minimal cut sets:

{BE1;BE2}; {BE1;BE4}; {BE1;BE3;BE5};

{BE2;BE3;BE5}; {BE3;BE4;BE5}:

Using the law of total probability, the top event

probability may then be expressed in terms of the basic

events as

TEðpÞ ¼ p1p2 þ p1p4 þ p1p3p5 þ p2p3p5 þ p3p4p5

2 p1p2p4 2 2p1p2p3p5 2 2p1p3p4p5

2 p2p3p4p5 þ 2p1p2p3p4p5; ð1Þ

where p1;…; p5 are the occurrence probabilities for basic

events BE1;…;BE5:

Similarly, the intermediate event probability can be

expressed as

IEðpÞ ¼ p1 þ p3 þ p4 2 p1p3 2 p1p4 2 p3p4

þ p1p3p4: ð2Þ

From these expressions of higher-level event probabil-

ities, we see that higher-level event information provides

information about basic event probabilities. Likewise, basic

event information provides information about higher-level

event probabilities.

4. Bayesian computation

As mentioned in Section 1, we obtain estimates of basic

event probabilities through the Bayesian approach to

inference. Bayesian methods are named for Bayes’ theorem

pðplxÞ ¼
f ðxlpÞpðpÞÐ
f ðxlpÞpðpÞdp

; ð3Þ

where pðplxÞ is called the posterior distribution, and is the

conditional distribution of the unknown failure probability p

given the observed data x: Furthermore, f ðxlpÞ is the

sampling density (commonly referred to as the likelihood)

Fig. 1. Example fault Tree.
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and pðpÞ represents the prior distribution for p: This prior

distribution can be obtained from experts, computer models,

engineering or physics theory, or previous studies. If there is

no information about p before a study is conducted, a

distribution which contains little or no information about p
can be substituted, often referred to as a noninformative

prior distribution. In our experience, there almost always

exists some prior knowledge that can and should be

incorporated.

Bayesian methods were relegated to obscurity for a long

period of statistical history. The primary reason was that

when p is of high dimension, the denominator in Eq. (3) was

difficult (and sometimes impossible) to calculate. However,

Gelfand and Smith [20] introduced computing routines that

made computation of the denominator possible through

simulation and Monte Carlo integration; Casella and George

[21] and Chib and Greenberg [22] provide good introduc-

tions to these computing routines. The broad class of

modern Bayesian computation was aptly named Markov

chain Monte Carlo (MCMC) and Gilks et al. [23] provide a

nice review of the basic elements of MCMC computation.

At the heart of most basic Bayesian computation is the

complete conditional (or full conditional) distribution which

is defined as the conditional distribution of each parameter

given all other parameters in the model, including the data.

MCMC relies on the fact that sequential simulation from

complete conditionals (replacing recently updated par-

ameters successively) converges to the joint posterior

distribution of all the parameters. So, given a starting

point, after a certain number of preliminary iterations

(called the burn-in period) the simulated observations will

be from the desired joint posterior distribution. Often,

simulation from a complete conditional is difficult (or

seemingly impossible). The Metropolis-Hastings algorithm

[22] is a method for simulating from an arbitrary

distribution whose form is known up to a constant (as is

the case with Bayesian computation). The central idea is

that a random variable is generated from any distribution

with probability density function gð·Þ; and is accepted with

probability

min 1;
gðzlyÞhðyÞ
gðylzÞhðzÞ

� �
;

where z is the current value of the parameter (say, p) and y is

the proposed replacement value of the parameter; here hð·Þ

is probability density function (up to a constant) of the

desired arbitrary distribution. As the algorithm proceeds,

this distribution converges to the distribution of the actual

complete conditional.

This is an amazing result and makes Bayesian compu-

tation available for a rich class of problems. One obvious

consequence of the above choice is that the realizations will

not be independent, but will almost certainly exhibit

autocorrelation. In order to remedy this problem, it is

often recommended that realizations be skipped and only

every third observation, for example, be kept for inference.

This process of dropping observations to approximate

independence is called ‘thinning’. Also, to remove depen-

dence on the starting values of the parameters, a burn-in

period is often employed which means that a number of the

initial realizations are dropped before thinning subsequent

realizations.

In our case inference is then obtained using Bayes’

theorem implemented by MCMC; that is, we end up with a

set of draws from the joint posterior distribution of the basic

event probabilities p:

The advantage of this fully Bayesian approach is that,

except for the Monte Carlo sampling error which is

controlled by taking more samples, no approximations are

being made. The top event posterior distribution is based on

all available data and the basic event posterior distributions

are updated based on all higher-level data. We will apply the

proposed procedure for the simple fault tree example under

different scenarios in Section 5.

5. Example revisited

We consider several cases to examine the performance of

the method as a function of two factors: the strength of the

basic event data (strong or weak), the strength of the top

event data (strong or weak). The results for each of these

cases are compared and used as a means of assessing the

performance of the proposed approach. Weak data corre-

spond to a coefficient of variation (a ratio of the beta

standard deviation to the mean) of approximately 2.5, while

strong data have a coefficient of variation of approximately

0.4. The weak data roughly correspond to an equivalent

lognormal error factor of 10, while the strong data roughly

represent a lognormal error factor of 2. The lognormal error

factors were also considered in Martz and Almond [6].

In the following tables, BE, TE and IE refer to basic,

top and intermediate events, respectively. First, the cases

considered can be classified according to whether

information about the events is available and if so,

whether it is weak or strong. Table 1 describes the cases

in these terms.

Table 1

Various cases classified according to availability of event information

Case BE1–BE5 TE IE

1 Weak Weak None

2 Weak Strong None

3 Strong Weak None

4 Strong Strong None

5 Very weak Strong None

6 Strong None None

7 Very weak Weak None

8 Weak None None

9 Weak Weak Weak

10 Weak Weak Strong
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Recall that the basic event information is described by

Betaða; bÞ and that higher-level event information is

described by the equivalent number of event occurrences

~x in ~n trials. Table 2 describes the 10 cases in these terms.

For each of the cases, the Bayesian analysis described in

Section 4 was performed. That is, an MCMC algorithm was

applied to obtain draws from the joint posterior distribution

of the basic event probabilities p ¼ ðp1; p2; p3; p4; p5Þ: For

example, the joint posterior distributions for p in case 10 has

the following form

pðplxÞ / p10:15221ð1 2 p1Þ15:09221p20:14221

ð1 2 p2Þ6:89921p30:12921ð1 2 p3Þ4:17621p40:11821

ð1 2 p4Þ2:82121p50:10621ð1 2 p5Þ2:01221TEðpÞ0:163

ð1 2 TEðpÞÞ162:92320:163IEðpÞ5:086ð1 2 IEðpÞÞ508:55625:086
;

where TEðpÞ and IEðpÞ are functions of the basic event

probabilities p as given in Eqs. (1) and (2), respectively. The

form of the joint posterior distribution illustrates the use of

basic event information represented by a beta distribution

and higher-level event information represented by equival-

ent observational data. Once draws for p are obtained, TE

ðpÞ and IEðpÞ are evaluated resulting in draws from the

posteriors of the top and intermediate event probabilities,

respectively.

The results for each of the above outlined ten cases are

presented in Fig. 2. For each case, the posterior distribution

summaries of the TE, IE, BE2, and BE4 events are plotted;

the 2.5, 50 and 97.5 percentiles are indicated by short

horizontal lines. Each plot indicates the effect of including

various strengths of data. For example, compare the width of

the posterior 95% credible intervals for case 5 (strong TE

data) versus case 7 (weak TE data) in which the stronger data

have the predictable effect of reducing variability; the same

holds for case 6 (strong BE1–5 data) versus case 8 (weak

BE1–5 data). Note that having weak BE1–5 data is different

than having very weak BE1–5 data (represented by a

Beta(0.5,0.5) distribution); contrast case 2 with case 5

and case 1 with case 7. The effect of adding weak TE data can

depend on the type of BE1–5 data; when there are strong

BE1–5 data, there is little effect (see cases 3 and 6).

However, when weak TE data is added to weak BE1–5 data,

the variability of the BE2, BE4 and IE events has actually

increased. Here the weak TE data do not exactly reinforce the

BE1–5 data so that the resulting posterior from the combined

data is wider. Also compare case 1 with case 9 and case 9 with

case 10 in which wider posteriors arise when weak IE data or

different strong IE data are added. Other examples of the

patterns observed above can be seen in cases 1–4 in which

weak and strong BE1–5 data and weak and strong TE data

are considered in the four possible combinations. Thus, we

see that the effect is very different depending on which level

is being examined and what type of data is available at each

level. This demonstrates the value of collecting different

information at different levels which will be further

illustrated with an application of a genetic algorithm (GA)

for optimizing additional data collection based on an overall

budget constraint in Section 6.

6. Optimal resource allocation

In this section, we consider the optimal allocation of

additional tests performed to maximize the information gain

under a fixed budget. In our example, this means that we

must decide how many tests of each event should be

performed in order to minimize the uncertainty in the top

event probability estimate, under a fixed budget for

specified costs for each event test. To achieve this

optimization task, we use a GA [24,25].

Thus, we assume that there is a cost for collecting

additional event data and that higher-level event data are

more costly than basic event data. Consider the following

costs as an example of the costs for collecting a single

observations (events):

BE1: $1

BE2: $1

Table 2

Various cases in terms of beta parameters ða; bÞ and equivalent data ð~x; ~nÞ

Case BE1a BE2a BE3a BE4a BE5a TEb IEb

1 0.152, 15.092 0.142, 6.899 0.129, 4.176 0.118, 2.821 0.106, 2.012 0.163, 162.923

2 0.152, 15.092 0.142, 6.899 0.129, 4.176 0.118, 2.821 0.106, 2.012 5.141, 5140.881

3 5.086, 503.470 5.024, 246.180 4.963, 160.458 4.901, 117.627 4.840, 91.954 0.163, 162.923

4 5.086, 503.470 5.024, 246.180 4.963, 160.458 4.901, 117.627 4.840, 91.954 5.141, 5140.881

5 0.500, 0.500 0.500, 0.500 0.500, 0.500 0.500, 0.500 0.500, 0.500 5.141, 5140.881

6 5.086, 503.470 5.024, 246.180 4.963, 160.458 4.901, 117.627 4.840, 91.954

7 0.500, 0.500 0.500, 0.500 0.500, 0.500 0.500, 0.500 0.500, 0.500 0.163, 162.923

8 0.152, 15.092 0.142, 6.899 0.129, 4.176 0.118, 2.821 0.106, 2.012

9 0.152, 15.092 0.142, 6.899 0.129, 4.176 0.118, 2.821 0.106, 2.012 0.163, 162.923 0.152, 15.244

10 0.152, 15.092 0.142, 6.899 0.129, 4.176 0.118, 2.821 0.106, 2.012 0.163, 162.923 5.086, 508.556

a Betaða; bÞ parameters.
b Equivalent data ð~x; ~nÞ:
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BE3: $1

BE4: $1

BE5: $1

TE: $10

IE: $3

We define the maximum information gain in terms of the

maximum reduction in uncertainty of the top event

probability. That is, we consider the maximum reduction

in the relative length of the central 90% credible interval

from the top event posterior distribution before and after

Fig. 2. Posterior 95% credible intervals for the probability of events for each of the 10 cases. The upper left panel is for the top event (TE) probability, the upper

right is for the intermediate event (IE) probability, the lower left is for the basic event BE2 probability, and the lower right is for the basic event BE4

probability. The short horizontal lines correspond to the 2.5, 50 and 97.5 percentiles. Note that the very long intervals extend beyond the graphs.
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taking additional data. Note that this interval itself has a

distribution and we are concerned with the ratio of the

‘after’ new data and ‘before’ new data posterior lengths.

Here we take the 0.75 quantile of this distribution as the

criterion we wish to minimize.

Briefly, we describe how a GA can be used to find a

nearly optimal allocation. A GA operates on a ‘population’

of candidate ‘solutions’ to the optimization problem. In this

context, each candidate solution is a string of seven sample

sizes corresponding to additional tests to be done for events

BE1–BE5, TE and IE, respectively.

More specifically, the GA begins by constructing an

initial population of M solutions by randomly generating

solutions that do not exceed the given fixed budget. The

information gain criterion for each of the solutions in the

initial population is evaluated and the solutions are ranked

from smallest to largest, i.e. the smallest ratio is the best

solution in the initial population.

The second (and subsequent) GA generations are now

populated using the two genetic operations: crossover and

mutation. Crossover occurs when two parent solutions are

randomly selected without replacement from the initial

population according to probabilities that are inversely

proportional to their rank among the M solutions. The new

solution is obtained from the parent solutions by randomly

picking one of the two parents and taking its sample size for

the first event and then repeating this operation for each

of the remaining events. The two parents are then returned

to the initial population before the next crossover operation

is performed. In this way, an additional M solutions are

constructed using the crossover operator. Note that the

solutions are checked to make sure they do not exceed the

budget, so that solutions are generated until there are M such

feasible solutions. The information gain criterion is also

evaluated for each of these new solutions.

The GA proceeds next by mutating each of the initial M

solutions; i.e. we apply genetic mutation to each of the event

sample sizes. We also incorporate relaxation in the

probability that mutation occurs as a function of generation.

It is desired to mutate event sample size with probability

that decays exponentially as a function of generation. That

is, mutations become less and less likely as the number of

generations increases. To accomplish this, at generation g

each event sample size is mutated with probability

expð2mgÞ where m is a user-specified mutation rate

parameter. The effect of m is to control the rate at which

mutations occur and how mutations become less and less

likely as the number of generations increases. For our

example, we set m ¼ 0:01; although there is little effect

on the performance of the GA by using a different value

of m [25].

Given that mutation of an event sample size occurs, the

GA mutates the value with expectation approximately equal

to the current event sample size and a variance that

decreases with g: This is accomplished by means of a

logit transformation computed through the following steps:

1. Compute z ¼ ðy 2 LÞ=ðU 2 LÞ where y; L; and U are the

current, minimum and maximum sample sizes.

2. Compute L ¼ 0; U ¼ floor (budget/cost of event), where

floor is the largest integer not exceeding its argument.

3. Calculate d ¼ log½z=ð1 2 zÞ� þ ½Uniformð0; 1Þ2 0:5�s

expð2mgÞ; where Uniform(0,1) denotes a random draw

from a uniform distribution. Here s is a user-specified

parameter that controls the rate at which the variance

decreases as a function of g:

4. Finally, compute u¼LþðUþ12LÞexpðdÞ=½1þ expðdÞ�:

The desired mutated sample size is floorðuÞ which lies

between L and U: The resulting logit transformation has the

properties that the expected value is approximately equal to

the current sample size y and the standard deviation

decreases with g: Following this mutation procedure, M

additional solutions satisfying the budget constraint are

generated and the information gain criterion for each is

evaluated.

The GA used here is ‘elitist’, which means that the

population in the next generation consists of the M best

solutions from the 3M solutions currently being considered

(M initial solutions, M crossover solutions and M mutated

solutions). We execute the above GA for G generations.

To illustrate the GA for the allocation problem described

above, we consider a fixed budget of $100. Populations of

size 25 ðM ¼ 25Þ were used to generate 100 generations

ðG ¼ 100Þ: We consider case 8 from Section 5 in which

there were no data at the intermediate and top events. The

length of the 90% credible interval for top event probability

based on the existing data is 0.00318. The information gain

criterion is taken to be the 0.75 quantile of the relative

length distribution. For our example, we chose K ¼ 500; so

that we want the 125th largest relative length. Thus, we take

500 draws from the joint posterior distribution of the seven

event probabilities based on the current information. For

each draw, the numbers of events occurring are drawn from

binomial distributions using these event probabilities for the

proposed sample sizes specified by the GA candidate

solutions. Then the resulting posterior distribution is

calculated using MCMC; we compute the 90% central

credible interval for the top event probability based on 1000

draws; the length of the new interval is computed and

the relative length is computed by dividing it by the length

of the existing interval, 0.00318. Thus, there are 500 relative

lengths, one for each of the 500 draws from the joint

posterior distribution of the seven event probabilities based

on the existing information.

For a budget of $100, what resource allocation yields the

most reduction in the 90% credible interval length of the top

event probability? Based on a GA as described above, the

GA produced the traces presented in Figs. 3 and 4 which

display the criterion and additional number of tests

allocated, respectively. The information gain criterion starts

at 0.69 in generation 1 and decreases to 0.50 in generation

100 with an allocation of 54, 11, 5, 22 and 6 additional tests
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to basic events BE1–BE5, respectively, and no allocation to

either of the higher-level events. Note that an allocation

using the entire budget was not identified because the slight

improvement over that found was within the simulation

error of the information gain criterion.

Figs. 5 and 6 provide the GA traces for the criterion and

number of tests allocated for a budget of $100 but where

the higher-level event costs are assumed to be $1.25 and $2

for IE and TE. The information gain criterion starts at 0.61

in generation 1 and decreases to 0.37 in generation 100 with

an allocation of 44, 29 and 25 additional tests to basic events

BE1, BE3 and BE5, respectively, and 1 additional test at

the higher-level event TE. Consequently, no additional tests

are allocated to basic events BE2 and BE4 and higher-level

event IE.

7. Discussion

A fully Bayesian methodology has been developed for

using multilevel event data in fault tree quantification. The

method requires the identification and use of state-of-

knowledge uncertainty distributions for the probabilities of

occurrence of the initial basic events. The higher-level event

information must be expressed as equivalent observational

data. The performance of the methodology was illustrated

for a simple example and it performed well. This example

demonstrates the utility of the combined use of higher-level

data, particularly when the initial basic event data are weak.

The methodology developed for analyzing multilevel

fault tree data was then extended to address the question of

how to allocate additional test resources across the fault tree

events for the purpose of minimizing the uncertainty of the

top event probability. That is, for a given budget, the

allocation providing the most gain in information can be

determined. We demonstrated how a GA provides a

practical way to accomplish this.

Thus, the fully Bayesian approach is very attractive and

easy to use for fault tree analysis. It can naturally handle

data at different event levels. Moreover, allocation of

additional resources can easily be accomplished.
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Fig. 3. GA criterion trace for first scenario.

Fig. 4. GA number of tests allocation trace for first scenario.

Fig. 5. GA criterion trace for second scenario.

Fig. 6. GA number of tests allocation trace for second scenario.
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